If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x+2x^2=72
We move all terms to the left:
3x+2x^2-(72)=0
a = 2; b = 3; c = -72;
Δ = b2-4ac
Δ = 32-4·2·(-72)
Δ = 585
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{585}=\sqrt{9*65}=\sqrt{9}*\sqrt{65}=3\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{65}}{2*2}=\frac{-3-3\sqrt{65}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{65}}{2*2}=\frac{-3+3\sqrt{65}}{4} $
| -2.863.98-0.8y=-2.86 | | (x+5)(x+2)-3(4x-3)=(5-x)² | | x-0.6=x-36 | | 7m-8=14 | | 72d-45+13=12-2 | | 4n-12=5 | | 4n=8-12 | | -4x-8x-15=-4x+4-15 | | 67739=x+0.07x | | C=a/a+12^A | | (x^2-x-6)/(x^2-8x+15)=0 | | 40-8x=6(4-4x) | | 4(w+5)=7w+47 | | 2x2=32x | | (x^2-x-6)/(x^2-8+15)=0 | | 1/7(4(x-1)+19)=x | | x2+3x-1083=0 | | 4(-2x+9)=-2(3x-7 | | 3x=4x-16+6 | | x−2−8x=−2x−6+8x | | 175=1-1/5n | | 150-x=3*x-5 | | 3a+5=3a+ | | t+3t-7=4t=7 | | 150-x=3x-5 | | (2x-2)+35=180 | | 2x-2+35=180 | | .2n-1=175 | | 6x-12=3×-6 | | x+(x-46)+(x-35)+(1)/(2)x=360 | | 0.5*m=12 | | 1/5n-1=175 |